3,544 research outputs found

    A new species of Villiersicometes Santos-Silva, 2003 (Coleoptera, Cerambycidae, Disteniinae)

    Get PDF
    Villiersicometes absalom sp. nov., a new species of Villiersicometes Santos-Silva, 2003 (Coleoptera, Cerambycidae, Disteniinae) is described from French Guiana. The species is illustrated and a key to the species of the genus is provided

    Reform of the Swiss Fiscal Equalisation System

    Get PDF
    Finanzausgleich, Reform, Schweiz, Fiscal transfer, Reform, Switzerland

    Overview of Constrained PARAFAC Models

    Get PDF
    In this paper, we present an overview of constrained PARAFAC models where the constraints model linear dependencies among columns of the factor matrices of the tensor decomposition, or alternatively, the pattern of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that makes easier matricization operations, are first introduced. This Kronecker product based approach is also formulated in terms of the index notation, which provides an original and concise formalism for both matricizing tensors and writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for NthN^{th} order tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced. A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated constrained PARAFAC models

    Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity

    Get PDF
    We have theoretically studied the effect of deterministic temporal control of spontaneous emission in a dynamic optical microcavity. We propose a new paradigm in light emission: we envision an ensemble of two-level emitters in an environment where the local density of optical states is modified on a time scale shorter than the decay time. A rate equation model is developed for the excited state population of two-level emitters in a time-dependent environment in the weak coupling regime in quantum electrodynamics. As a realistic experimental system, we consider emitters in a semiconductor microcavity that is switched by free-carrier excitation. We demonstrate that a short temporal increase of the radiative decay rate depletes the excited state and drastically increases the emission intensity during the switch time. The resulting time-dependent spontaneous emission shows a distribution of photon arrival times that strongly deviates from the usual exponential decay: A deterministic burst of photons is spontaneously emitted during the switch event.Comment: 12 pages, 4 figure

    Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    Get PDF
    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond. We investigate experimentally and theoretically the role of several main parameters: the material backbone and its electronic bandgap, the pump power, the quality factor, and the duration of the switch pulse. The magnitude of the shift is reduced when the backbone of the central λ\lambda-layer has a greater electronic bandgap; pumping with photon energies near the bandgap resonantly enhances the switched magnitude. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time that is set by the quality factor. We provide the settings for the essential parameters so that the frequency shift of the cavity resonance can be increased to one linewidth

    Discovery of VHE and HE emission from the blazar 1ES 0414+009 with H.E.S.S and Fermi-LAT

    Full text link
    The high energy peaked BL Lac (HBL) object 1ES 0414+009 (z=0.287) is a distant very high-energy (VHE, E > 100 GeV) blazars with well-determined redshift. This source was detected with the High Energy Stereoscopic System (H.E.S.S.) between October 2005 and September 2009. It was also detected with the Fermi Large Area Telescope (LAT) in 21 months of data. The combined high energy (HE) and VHE spectra, once corrected for gamma-gamma absorption on the extragalactic background light (EBL), indicate a Compton peak located above few TeV, among the highest in the BL Lac class.Comment: proceeding from the 25th Texas Symposium on Relativistic Astrophysics (Heidelberg, Germany, 2010

    Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics

    Full text link
    The influence of pure dephasing on the dynamics of the coupling between a two-level atom and a cavity mode is systematically addressed. We have derived an effective atom-cavity coupling rate that is shown to be a key parameter in the physics of the problem, allowing to generalize the known expression for the Purcell factor to the case of broad emitters, and to define strategies to optimize the performances of broad emitters-based single photon sources. Moreover, pure dephasing is shown to be able to restore lasing in presence of detuning, a further demonstration that decoherence can be seen as a fundamental resource in solid-state cavity quantum electrodynamics, offering appealing perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure

    Unique Minimal Liftings for Simplicial Polytopes

    Full text link
    For a minimal inequality derived from a maximal lattice-free simplicial polytope in Rn\R^n, we investigate the region where minimal liftings are uniquely defined, and we characterize when this region covers Rn\R^n. We then use this characterization to show that a minimal inequality derived from a maximal lattice-free simplex in Rn\R^n with exactly one lattice point in the relative interior of each facet has a unique minimal lifting if and only if all the vertices of the simplex are lattice points.Comment: 15 page
    corecore